Large Scale Simulation of Particulate Flows
نویسندگان
چکیده
Simulations of particles in fluid flows are of great interest to numerous industries using sedimentation, fluidization, lubricated transport, and hydraulic fracturing of hydrocarbon reservoirs. Simulating incompressible viscoelastic flows with millions of rigid particles is computationally a very challenging problem. In addition to using sophisticated modeling techniques and numerical algorithms, one must develop a scalable parallel formulation of the simulation. This task is further complicated by the dynamic nature of the system resulting from unrestricted motion of the particles. In this paper, we present an efficient algorithm for simulating particulate flows and discuss its parallel implementation. At each time step, a number of linear systems are solved using preconditioned iterative methods in which the matrix-vector product does not require explicit computation and storage of the matrix. The preconditioners developed for these systems are optimal so that convergence is assured in a fixed number of iterations. Moreover, these preconditioners do not require matrix inversion, and can be applied efficiently in parallel using their matrix-free forms. As a result, the algorithm is highly parallel and scalable, and achieves good speed improvement on the SGI Origin 2000.
منابع مشابه
Mixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver
In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...
متن کاملMixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver
In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...
متن کاملSimulation of liquid-gas-solid flows with the Lattice Boltzmann Method
The lattice Boltzmann method (LBM) emerged from the field of computational fluid dynamics as an alternative to Navier-Stokes based approaches. It has since been proven to be applicable also for the simulation of free surface flows (liquid-gas flow) and particulate flows (liquid-solid flow). In the past both algorithmss for free surface flows and particulate flows have been realized that preserv...
متن کاملLarge-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer
Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999